
Laura Clark

®

Development Tools Product Marketing
Lisp Product Marketing Manager

Macintosh Allegro
Common Lisp Update

®

Overview

What You Expect in a Powerful
Lisp Environment . . .

• Full Common Lisp
• EMACS-style editor
• Inspector
• Debugging tools
• Lisp Listener

What You Want in a Macintosh
Development Environment . . .

• Fast, compact compiler
• High-level access to the toolbox
• Object library defines windows,

dialogs, and menus
• Interactive interface designer

Why Lisp?

• Interactive
• Dynamic
• Memory management
• Run-time error handling
• Object technology

Macintosh Allegro CL v.1.3.2

• Released in April 1990
• Interface designer with source
• Programmable grapher with source
• Windoids
• FFI support MPW 3.0 object files
• Color dialogs and menus

In the Future

• System 7.0 support
– Virtual Memory
– AppleEvents

• Ephemeral GC
• CLOS
• Steele second edition compatibility
• Small applications

Bill St. Clair

®

Macintosh Allegro Common Lisp
Lisp Hacker - ATG Cambridge

®

What’s new in MACL 2.0
Technical Details

Macintosh Allegro
Common Lisp Update

MACL 2.0–New Features

• CLtL2 compatible (186 cleanup issues)
• CLOS replaces Object-Lisp
• New representation

– 32-bit clean, VM, dynamic-extent
• Views replace Dialogs
• New inspector and debugger

Common
Lisp
Object
System

Common Lisp

Slide: CBC Text 1

• CLOS is the standard
• Seamlessly integrated

– Generic functions behave just like
regular functions

– Classes are part of the type system
• Featureful (and then some)

Object System

• Class/Instance paradigm
• Instance “slots” for local state
• Class “slots” for shared state
• Methods provide specialized

behavior for generic functions
• Multiple inheritance

Object-Lisp

• Prototype/Instance paradigm
• Local variables for local state
• Inherited variables for shared state
• Object functions provide

specialized behavior
• Multiple inheritance
• Object-Lisp is dead. Long live CLOS.

Object-Lisp => CLOS

• defobject + exist =>
defclass + initialize-instance

• defobfun => defmethod (automatic)
• object-var => (slot-value ...)
• (ask instance (f x y)) => (f instance x y)
• usual-xxx => call-next-method

Statistics

Function-call 8 3 9 2 1

Slot-value 21 11 41 1 1

Accessor 21 18 23 1 1

Make-instance 1.6 1 8-50

Instance size 4N+8 N+3 N+6

System size 16K 200K 1M

1.3 2.0 2.0
OL CLOS PCL 1.3 2.0

New Representation

• BBOP => low-bits tag
• Stack-consed (downward) closures
• Dynamic-extent
• Ephemeral gc
• Virtual memory: copying gc

BBOP (Big Bag of Pages)

F Page Offset

Memory

Page Table

Type

Low-Bits Tag

 Pointer Tag

Memory

000 Fixnum
001 Vector
010 Symbol
011 Float
100 Cons
101 Reserved
110 Lfun
111 Immediate

New Inspector and Debugger

• Inspected values can be modified
• Cut and paste of Lisp objects
• Return-from/restart frame
• Condition system restarts

– Unbound variable
– File open error

Matthew MacLaurin

®

SIAC / SQA
Lead Engineer–Automation

Macintosh Allegro
Common Lisp Update

®

GATE: A Case Study

GATE

• A “user emulator” for software testing
• Written in Lisp, C, and Modula-2
• In use at Apple today

Generalized Automated
Test Environment

Project Features

• Emulates user actions–drag, type, etc.
• Understands Macintosh interface

and applications
• Writes test scripts
• Checks test results
• Tests multiple CPUs simultaneously
• Handles target malfunction gracefully

Multi-Lingual Development

• Used existing toolkit written in C
• New utilities written in Modula/2
• Interface written in Object Lisp
• Main program logic in Common Lisp

Why Lisp?

• Project challenges
 – Few precedents
 – Moving target
 – Algorithmically nasty problem
• Lisp advantages

– Development time
– Environment

What Makes Sense in Lisp?

• Complex, large scale projects
• Dynamic projects
• Smart applications
• Knowledge-based systems
• Things that haven’t been done before

What Doesn’t Make Sense in Lisp?

• Device drivers
• Real-time–unless you’re very careful
• Applications which don’t stress functionality

My Favorite Features

• Multi-tasking
• Foreign function interface
• Interface designer
• Interactive environment

How to Lisp in Your Organization

• Think functionality
• Do your homework re: Lisp style
• Integrate existing code in C, Pascal

The power to be your best.

®

